2 (2) [D. 5 3 (2)]

微積分(II) 期末考試 (2002/6/18)

每題10分

Problem 1. Let R be the region in the upper half of the xy plane bounded by the parabolas $y^2 = 4(1-x)$, $y^2 = 4(1+x)$, and the x axis. Compute $\int_R \sqrt{x^2 + y^2} dx$ by making the change of variables $x = u^2 - v^2$ and y = 2uv.

Problem 2. Use Green's Theorem to find the value $\oint_{\lambda} y dx + x^2 y dy$, where λ is the closed curve formed by $y^2 = x$ and y = x between (0,0) and (1,1).

Problem 3. 求 $\int_{\mathbb{R}} x^2 y$, 其中R 為 (0,0), (1,2), (2,1) 所圍成的三角形。

Problem 4. Convert the following integral to polar coordinates and evaluate. $\int_0^1 \int_{x^2}^x (x^2 + y^2)^{-1/2} dy dx$.

Problem 5. Find the volume of the solid bounded above by the paraboloid $z = 4 - x^2 - y^2$ and below by the plane z = 4 - 2x.

Problem 6 Find the volume of the solid bounded by the cylinder $r=2\cos\theta$, the cone $z=r,\ (r\geq 0)$, and the plane z=0 on a polar coordinate.

Problem 7. Find the area of the region T bounded by the parabolas $y = x^2$ and $y = 4 - x^2$.

Problem 8. Compute the line integral $\int_{\lambda} (x^2ydx + y^3dy)$, where λ is the arc of the parabola $y = x^2$ from (0,0) to (1,1).

Problem 9. Find the extrema of the function f defined by $f(x,y) = x^3 - 12xy + 8y^2$.

Problem 10. Show that $\int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Problem 11. 用微分求√27× ³1021 的近似值。

Problem 12. If $f(x,y) = x^2 + xy$ and P = (1,-1), find the maximum value of any directional derivative $D_{\vec{v}}f(P)$.

Problem 13. Define

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Show that f is not continuous at (0,0).

Problem 14. Find the center and radius of curvature of $\lambda(t) = (t^2, t, t^3)$ at t = 1.

Problem 15. Find an equation of the plane passing through the three points (-1,1,2), (2,0,-3), and (5,1,-2).

Problem 16. Find the surface area of a sphere of radius r.

Problem 17. One loop of the lemniscate $r^2 = \cos 2\theta$ is rotated about the polar axis. Find the area of the surface generated.